BDNYC at AAS 225

BDNYC (and friends) are out in force for the 225th meeting of the American Astronomical Society!

Please come see our posters and talks (mostly on Monday). To whet your appetite, or if you missed them, here are some samplers:

Munazza Alam (Monday, 138.40)
High-Resolution Spectral Analysis of Red & Blue L Dwarfs
AAS225_Munazza_posterSara Camnasio (Monday, 138.39)
Multi-resolution Analysis of Red and Blue L Dwarfs
AAS225_Sara_posterKelle Cruz and Stephanie Douglas (Monday, 138.37)
When good fits go wrong: Untangling Physical Parameters of Warm Brown Dwarfs

AAS225_Stephanie_posterStephanie Douglas (Monday 138.19)
Rotation and Activity in Praesepe and the Hyades

AAS225_Steph_poster2Jackie Faherty (Talk, Monday 130.05)
Clouds in the Coldest Brown Dwarfs

Joe Filippazzo (Monday, 138.34)
Fundamental Parameters for an Age Calibrated Sequence of the Lowest Mass Stars to the Highest Mass Planets
Joe Filippazzo - AAS225

Paige Giorla (Monday, 138.44)
T Dwarf Model Fits for Spectral Standards at Low Spectral Resolution
AAS225_Paige_posterKay Hiranaka (Talk, Monday 130.04D)
Constraining the Properties of the Dust Haze in the Atmospheres of Young Brown Dwarfs

Erini Lambrides (Thursday, 432.02)
Can 3000 IR spectra unveil the connection between AGN and the interstellar medium of their host galaxies?

Emily Rice (Tuesday, 243.02)
STARtorialist: Astronomy Outreach via Fashion, Sci-Fi, & Pop Culture
AAS225_STARtorialistAdric Riedel (Monday, 138.38)
The Young and the Red: What we can learn from Young Brown Dwarfs
AAS225_Adric_poster

Uncertainty Propagation

All observations have associated uncertainties which must be propagated through your analysis to a an uncertainty on a final result. The principle of uncertainty propagation is fairly simple:

$$!\sigma_x^2 = \sigma_u^2\left(\frac{\partial x}{\partial u}\right)^2 + \sigma_v^2\left(\frac{\partial x}{\partial v}\right)^2+\dots +2\sigma_{uv}^2\left(\frac{\partial x}{\partial u}\right)\left(\frac{\partial x}{\partial v}\right)+\dots$$

The first two terms on the right are the averages of the squares of the deviations in x produced by the uncertainties in observables u and v respectively. The third term on the right is the average of the cross terms, which cancel out if u and v are uncorrelated. Thus in most situations, a reasonable approximation is:

$$!\sigma_x^2 = \sum\limits_u\sigma_u^2\left(\frac{\partial x}{\partial u}\right)^2$$

Examples

A typical situation is the sum of two observables each with a multiplicative factor:

$$!x=au+bv$$

$$!\left(\frac{\partial x}{\partial u}\right)=a,\hspace{10pt}\left(\frac{\partial x}{\partial v}\right)=b$$

$$!\sigma_x = \sqrt{\sigma_u^2a^2 + \sigma_v^2b^2}$$

which is the oft used “summing in quadrature.”

Perhaps you have the product of two observables:

$$!x=auv+b$$

$$!\left(\frac{\partial x}{\partial u}\right)=av,\hspace{10pt}\left(\frac{\partial x}{\partial v}\right)=au$$

$$!\sigma_x = \sqrt{\sigma_u^2(av)^2 + \sigma_v^2(au)^2}=a\sqrt{\sigma_u^2v^2 + \sigma_v^2u^2}$$

Finally, perhaps you have the inverse of one observable times the exponential of another:

$$!x=\frac{a}{u}e^{bv}$$

$$!\left(\frac{\partial x}{\partial u}\right)=\left(-\frac{a}{u^2}\right)e^{bv},\hspace{10pt}\left(\frac{\partial x}{\partial v}\right)=\frac{a}{u}be^{bv}$$

$$!\sigma_x = \sqrt{\sigma_u^2\left(\frac{a}{u^2}e^{bv}\right)^2 + \sigma_v^2\left(\frac{a}{u}be^{bv}\right)^2}=\frac{a}{u}e^{bv}\sqrt{\frac{\sigma_u^2}{u^2}+\sigma_v^2b^2}$$

Easy!